507 research outputs found

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    Human-driven application management at the Edge

    Get PDF
    The design and management of Edge systems will proactively involve human intelligence at the Edge, according to a human-driven approach that increases productivity and improves usability. Due to its ubiquity and heterogeneity, the Edge will give to application administrators a more decisional role in application deployment and resource management. Final decisions on where to distribute application components should be informedly taken by them during the entire application lifecycle, accounting for compliance to QoS requirements. As a first step, this requires devising new tools that suitably abstract heterogeneity of edge systems, permit simulating different runtime scenarios and ease human-driven management of such systems by providing meaningful evaluation metrics. In this article, we discuss how human decision-making can be supported to solve QoS-aware management related challenges for Edge computing

    A Declarative Goal-oriented Framework for Smart Environments with LPaaS

    Full text link
    Smart environments powered by the Internet of Things aim at improving our daily lives by automatically tuning ambient parameters (e.g. temperature, interior light) and by achieving energy savings through self-managing cyber-physical systems. Commercial solutions, however, only permit setting simple target goals on those parameters and do not consider mediating conflicting goals among different users and/or system administrators, and feature limited compatibility across different IoT verticals. In this article, we propose a declarative framework to represent smart environments, user-set goals and customisable mediation policies to reconcile contrasting goals encompassing multiple IoT systems. An open-source Prolog prototype of the framework is showcased over two lifelike motivating examples

    Probabilistic QoS-aware Placement of VNF chains at the Edge

    Get PDF
    Deploying IoT-enabled Virtual Network Function (VNF) chains to Cloud-Edge infrastructures requires determining a placement for each VNF that satisfies all set deployment requirements as well as a software-defined routing of traffic flows between consecutive functions that meets all set communication requirements. In this article, we present a declarative solution, EdgeUsher, to the problem of how to best place VNF chains to Cloud-Edge infrastructures. EdgeUsher can determine all eligible placements for a set of VNF chains to a Cloud-Edge infrastructure so to satisfy all of their hardware, IoT, security, bandwidth, and latency requirements. It exploits probability distributions to model the dynamic variations in the available Cloud-Edge infrastructure, and to assess output eligible placements against those variations

    Enabling Prescription-based Health Apps

    Full text link
    We describe an innovative framework for prescription of personalised health apps by integrating Personal Health Records (PHR) with disease-specific mobile applications for managing medical conditions and the communication with clinical professionals. The prescribed apps record multiple variables including medical history enriched with innovative features such as integration with medical monitoring devices and wellbeing trackers to provide patients and clinicians with a personalised support on disease management. Our framework is based on an existing PHR ecosystem called TreC, uniquely positioned between healthcare provider and the patients, which is being used by over 70.000 patients in Trentino region in Northern Italy. We also describe three important aspects of health app prescription and how medical information is automatically encoded through the TreC framework and is prescribed as a personalised app, ready to be installed in the patients' smartphone

    How to Place Your Apps in the Fog -- State of the Art and Open Challenges

    Full text link
    Fog computing aims at extending the Cloud towards the IoT so to achieve improved QoS and to empower latency-sensitive and bandwidth-hungry applications. The Fog calls for novel models and algorithms to distribute multi-service applications in such a way that data processing occurs wherever it is best-placed, based on both functional and non-functional requirements. This survey reviews the existing methodologies to solve the application placement problem in the Fog, while pursuing three main objectives. First, it offers a comprehensive overview on the currently employed algorithms, on the availability of open-source prototypes, and on the size of test use cases. Second, it classifies the literature based on the application and Fog infrastructure characteristics that are captured by available models, with a focus on the considered constraints and the optimised metrics. Finally, it identifies some open challenges in application placement in the Fog

    Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum

    Full text link
    The problem of managing multi-service applications on top of Cloud-Edge networks in a QoS-aware manner has been thoroughly studied in recent years from a decision-making perspective. However, only a few studies addressed the problem of actively enforcing such decisions while orchestrating multi-service applications and considering infrastructure and application variations. In this article, we propose a next-gen orchestrator prototype based on Docker to achieve the continuous and QoS-compliant management of multiservice applications on top of geographically distributed Cloud-Edge resources, in continuity with CI/CD pipelines and infrastructure monitoring tools. Finally, we assess our proposal over a geographically distributed testbed across Italy.Comment: 25 pages, 8 figure

    Secure FaaS orchestration in the fog: how far are we?

    Get PDF
    AbstractFunction-as-a-Service (FaaS) allows developers to define, orchestrate and run modular event-based pieces of code on virtualised resources, without the burden of managing the underlying infrastructure nor the life-cycle of such pieces of code. Indeed, FaaS providers offer resource auto-provisioning, auto-scaling and pay-per-use billing at no costs for idle time. This makes it easy to scale running code and it represents an effective and increasingly adopted way to deliver software. This article aims at offering an overview of the existing literature in the field of next-gen FaaS from three different perspectives: (i) the definition of FaaS orchestrations, (ii) the execution of FaaS orchestrations in Fog computing environments, and (iii) the security of FaaS orchestrations. Our analysis identify trends and gaps in the literature, paving the way to further research on securing FaaS orchestrations in Fog computing landscapes

    QoS-aware Deployment of IoT Applications Through the Fog

    Get PDF
    Fog computing aims at extending the Cloud by bringing computational power, storage and communication capabilities to the edge of the network, in support of the IoT. Segmentation, distribution and adaptive deployment of functionalities over the continuum from Things to Cloud are challenging tasks, due to the intrinsic heterogeneity, hierarchical structure and very large scale infrastructure they will have to exploit. In this paper we propose a simple, yet general, model to support the QoS-aware deployment of multi-component IoT applications over Fog infrastructures. The model describes operational systemic qualities of the available infrastructure (latency and bandwidth), interactions among software components and Things, and business policies. Algorithms to determine eligible deployment plans for an application over a Fog infrastructure are presented. A Java tool, FogTorch, based on the proposed model has been prototyped
    • …
    corecore